WBCS (Main) Exam Paper - VI Practice Set

Answers with Explanation

1. (c) $\times \times \times$) $64329(\times \times x$
$\frac{\times \times \times \ldots(\mathrm{i})}{1752}$
$\frac{\times \times \times \times \ldots(\mathrm{ii})}{\times 1149}$
$\frac{\times \times \times \times \ldots(\mathrm{iii})}{\times 213}$

Number at (i) $=643-175=468$
Number at (ii) $=1752-114=1638$
Number at (iii) $=1149-213=936$
Clearly, 468, 1638 and 936 are multiples of
234 and $234>213$.
\therefore Divisor $=234$

2. (b) $2^{31}=\left(2^{8}\right)^{4} \div 2=(256)^{4} \div 2$
$=\frac{\ldots . .6}{2}=\ldots . .3$
Clearly, the remainder will be 3 when divided by 5 .
Illustration :
$23 \div 5$ gives remainder $=3$
$83 \div 5$ gives remainder $=3$
3. (c) Prime numbers between 80 and 90 .
$=83$ and 89
\therefore Required product $=83 \times 89=7387$
4. (b) The LCM of $5,6,7$ and $8=840$
\therefore Required number $=840 \mathrm{k}+3$ which is exactly divisible by 9 for some value of k .
Now, $840 \mathrm{k}+3=93 \times 9 \mathrm{k}+(3 \mathrm{k}+3)$
When $\mathrm{k}=2,3 \mathrm{k}+3=9$, which is divisible by 9 .
\therefore Required number $=840 \times 2+3=1683$
5. (b) LCM of 25,50 and $75=150$

On dividing 43582 by 150 , remainder $=82$
150) $43582(290$

खुप्ञিिय

$$
\begin{aligned}
& \frac{300}{1358} \\
& \frac{1350}{82}
\end{aligned}
$$

\therefore Required number
$=43582+(150-82)=43650$
6. (a) We have to find HCF of
(1657-6 = 1651) and
(2037-5 = 2032)
आাভ্ভির্स
$1651=13 \times 127$
$2032=16 \times 127$
फ्याप्विय
$\therefore \mathrm{HCF}=127$
So, required number will be 127 .
7.
(a) $?=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\right) \div\left(\frac{2}{5}-\frac{5}{9}+\frac{3}{5}-\frac{7}{18}\right)$
$=\left(\frac{30-15+12-10}{60}\right) \div\left(\frac{36-50+54-35}{90}\right)$
$=\left(\frac{17}{60}\right) \div\left(\frac{5}{90}\right)=\frac{17}{60} \times 18=\frac{51}{10}=5 \frac{1}{10}$
8. (a) Using (x) of Basic Formulae

Let $0.9=\mathrm{x}, 0.2=\mathrm{y}$ and $0.3=\mathrm{z}$
फुাঙ্ভির্ন
Then, the given expression
$=\frac{x \times x \times x+y \times y \times y+z \times z \times z-3 \times x \times y \times z}{x \times x+y \times y+z \times z-x \times y-y \times z-z \times x}$
$=\frac{x^{3}+y^{3}+z^{3}-3 x y z}{x^{2}+y^{2}+z^{2}-x y-y z-z x}$
$=\frac{(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)}{x^{2}+y^{2}+z^{2}-x y-y z-z x}$
$=\mathrm{x}+\mathrm{y}+\mathrm{z}$
$=0.9+0.2+0.3=1.4$
9. (b) $\sqrt{0.01}+\sqrt{0.81}+\sqrt{1.21}+\sqrt{0.0009}$
$=0.1+0.9+1.1+0.03$
$=2.13$
10. (b) Total correct marks of 35 children
$=35 \times 35+35-65$
$=1225-30=1195$
Required average $=\frac{1195}{35}=34.14$

OR

Diffference $=-65+35=-30$
Required average $=35-\frac{30}{35}$
$=35-0.857=34.143$
11. (d) Middle i.e. eighth number

$$
\begin{aligned}
& =8 \times 6.5+8 \times 8.5-15 \times 7 \\
& =52+68-105=120-105 \\
& =15
\end{aligned}
$$

12. (c) Average of first five odd multiples of 3

$$
\begin{aligned}
& =\frac{3(1+3+5+7+9)}{5} \\
& =\frac{3 \times 25}{5}=15
\end{aligned}
$$

13. (d) $\frac{x}{y}=\frac{2}{5}$ (Given)

$$
\therefore \frac{5 x+3 y}{5 x-3 y}=\frac{5\left(\frac{x}{y}\right)+3}{5\left(\frac{x}{y}\right)-3}
$$

(Dividing numerator and denominator by y)

$$
=\frac{5 \times \frac{2}{5}+3}{5 \times \frac{2}{5}-3}=\frac{2+3}{2-3}=-5
$$

14. (a) $\frac{2}{\mathrm{x}}=\frac{4}{8} \Rightarrow 4 \mathrm{x}=2 \times 8$
$\Rightarrow \mathrm{x}=\frac{2 \times 8}{4}=4$
$\therefore \frac{\mathrm{x}}{\mathrm{y}}=\frac{2}{3}$
खुपाভির্ন
$\Rightarrow \frac{4}{\mathrm{y}}=\frac{2}{3}$
$\Rightarrow 2 \mathrm{y}=4 \times 3$
$\Rightarrow y=\frac{4 \times 3}{2}=6$
15. (b) Let the present age of A and B be $4 x$ and $5 x$ years respectively,
According to the question,
$\frac{4 x+5}{5 x+5}=\frac{5}{6}$
$\Rightarrow 25 \mathrm{x}+25=24 \mathrm{x}+30$
$\Rightarrow \mathrm{x}=30-25=5$
\therefore A's present age
$=4 \mathrm{x}=4 \times 5=20$ years
16. (a) Let the number be x.

$$
\begin{aligned}
& \therefore \frac{3}{5} \times \frac{60}{100} \times \mathrm{x}=36 \\
& \Rightarrow \mathrm{x}=\frac{36 \times 5 \times 5}{3 \times 3}=100
\end{aligned}
$$

17. (b) Expression
$=\frac{25}{4} \%$ of $1600+\frac{25}{2} \%$ of 800

$=\frac{1600 \times 25}{400}+\frac{800 \times 25}{200}$
$=100+100=200$
18. (c) Required per cent $=\frac{40}{80} \times 100=50$
19. (b) If the CP of A articles be equal to SP of B articles, then

Loss percent $=\frac{B-A}{B} \times 100$
खुपাপ্িির্স
$=\frac{16-10}{16} \times 100=\frac{6}{16} \times 100=37.5 \%$
20. (d) C.P. of article $=$ Rs. 100 (let).
\therefore S.P. $=$ Rs. 125
New S.P. = Rs. 250
\therefore Profit percent
$=\frac{250-100}{100} \times 100=150 \%$
21. (a) Loss $=5-4.50=0.50$
\therefore Loss percent $=\frac{0.50}{5} \times 100=10 \%$
22. (c) Single equivalent discount

फुपाप্ভির্ন
$=\left(10+5-\frac{10 \times 5}{100}\right) \%$
$=(15-0.5) \%=14.5 \%$
23. (b) (a) Single equivalent discount for 20% and 15% $=\left(20+15-\frac{20 \times 15}{100}\right) \%=32 \%$

Single equivalent discount for 32% and 10% $=\left(32+10-\frac{32 \times 10}{100}\right)=38.8 \%$
(b) Single equivalent discount for 25% and 12% $=\left(25+12-\frac{25 \times 12}{100}\right)=34 \%$

Single equivalent discount for 34% and 8%
$=\left(34+8-\frac{34 \times 8}{100}\right) \%$
खुাঙ্ভির্स
$=42-2.72=39.28 \%$
24. (c) Let the cost price be $₹ 100$.

Marked price $=₹ 140$
S.P. $=\frac{75 \times 140}{100}=₹ 105$
\therefore Profit per cent $=5 \%$
25. (a) S.I. $=$ Amount - Principal
$=$ Rs. (6900-6000)
= Rs. 900
\therefore Rate $=\frac{\text { Interest } \times 100}{\text { Principal } \times \text { Time }}=\frac{900 \times 100}{6000 \times 3}$
$=5 \%$ per annum
26. (b) $\mathrm{SI}=₹(7200-6000)=₹ 1200$
$\therefore \mathrm{SI}=\frac{\mathrm{PRT}}{100}$

$\Rightarrow 1200=\frac{6000 \times \mathrm{R} \times 4}{100}$
$\Rightarrow \mathrm{R}=\frac{1200 \times 100}{6000 \times 4}=5 \%$
New rate of $\mathrm{R}=5 \times 1.5=7.5 \%$
Then, SI $=\frac{6000 \times 7.5 \times 5}{100}=₹ 2250$
\therefore Amount $=₹(6000+2250)=₹ 8250$
27. (b) $\frac{500 \times 2 \times \mathrm{R}_{1}}{100}-\frac{500 \times 2 \times \mathrm{R}_{2}}{100}$
$=2.5$, where $R_{1} \& R_{2}$ are rate\% of both banks
$\Rightarrow 10\left(\mathrm{R}_{1}-\mathrm{R}_{2}\right)=2.5$
$\Rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}=\frac{2.5}{10}$
$=0.25 \%$ per annum
28. (c) Let principal be Rs. P.

Interest in 1 year $=\frac{P R T}{100}$
$=\frac{\mathrm{P} \times 10}{100}=$ Rs. $\frac{\mathrm{P}}{10}$
According to question,

$$
\begin{aligned}
& \therefore \mathrm{P}\left[\left(1+\frac{\mathrm{R}}{100}\right)^{2}-1\right]-\frac{\mathrm{P}}{10}=132 \\
& \Rightarrow \mathrm{P}\left[\left(1+\frac{10}{100}\right)^{2}-1\right]-\frac{\mathrm{P}}{10}=132 \\
& \Rightarrow \mathrm{P}\left[\left(\frac{11}{10}\right)^{2}-1\right]-\frac{\mathrm{P}}{10}=132
\end{aligned}
$$

$\Rightarrow \mathrm{P}\left(\frac{121}{100}-1\right)-\frac{\mathrm{P}}{10}=132$
$\Rightarrow \frac{21 \mathrm{P}}{100}-\frac{\mathrm{P}}{10}=132$
$\Rightarrow \frac{21 \mathrm{P}-10 \mathrm{P}}{100}=132$
$\Rightarrow \frac{11 \mathrm{P}}{100}=132$
$\Rightarrow \mathrm{P}=\frac{132 \times 100}{11}=$ Rs. 1200
29. (d) $A=P\left(1+\frac{\mathrm{R}}{100}\right)^{\mathrm{T}}$
$\Rightarrow 1348.32=1200\left(1+\frac{\mathrm{R}}{100}\right)^{2}$
$\Rightarrow \frac{1348.32}{1200}=\left(1+\frac{\mathrm{R}}{100}\right)^{2}$
$\Rightarrow \frac{134832}{120000}=\left(1+\frac{\mathrm{R}}{100}\right)^{2}$
$\Rightarrow \frac{11236}{10000}=\left(1+\frac{\mathrm{R}}{100}\right)^{2}$
$\Rightarrow\left(\frac{106}{100}\right)^{2}=\left(1+\frac{\mathrm{R}}{100}\right)^{2}$
$\Rightarrow \frac{106}{100}=1+\frac{\mathrm{R}}{100}$
$\Rightarrow 1+\frac{6}{100}=1+\frac{\mathrm{R}}{100}$
$\Rightarrow R=6 \%$ per annum.
30. (d) Let S.I. $=₹ 100$,
\& Principal $=₹ 100$
\therefore Rate $=\frac{\text { S.I. } \times 100}{\text { Principal } \times \text { Time }}$
$=\frac{100 \times 100}{100 \times 8}=\frac{25}{2} \%$
\therefore C.I. $=\mathrm{P}\left[\left(1+\frac{\mathrm{r}}{100}\right)^{\mathrm{T}}-1\right]$

फ़ाजिएर्न

खुपा पिए

फाणिিर्य

$=8000\left[\left(1+\frac{25}{200}\right)^{2}-1\right]$
$=8000\left(\frac{81}{64}-1\right)=\frac{8000 \times 17}{64}=₹ 2125$
31. (b) $(\mathrm{A}+\mathrm{B})$'s 1 day's work $=\frac{1}{36}$
$(B+C)$'s 1 day's work $=\frac{1}{60}$
$(C+A)$'s 1 day's work $=\frac{1}{45}$
फाগ্ভির্স
Adding all three,
$2(A+B+C)$'s 1 day's work
$=\frac{1}{36}+\frac{1}{60}+\frac{1}{45}=\frac{5+3+4}{180}=\frac{1}{15}$
$\therefore(\mathrm{A}+\mathrm{B}+\mathrm{C})$'s 1 day's work $=\frac{1}{30}$
\therefore C's 1 day's work $=\frac{1}{30}-\frac{1}{36}=\frac{6-5}{180}=\frac{1}{180}$ |
Hence, C alone will finish the work in 180 | days.
32. (c) Men Working hours Days

$16 \uparrow$	$14 \uparrow$	12
28	12	

$\left.\therefore \begin{array}{l}28: 16 \\ 12: 14\end{array}\right\}:: 12: x$
$\Rightarrow 28 \times 12 \times \mathrm{x}=16 \times 14 \times 12$
$\Rightarrow \mathrm{x}=\frac{16 \times 14 \times 12}{28 \times 12}=8$ days
33. (c) Work done by 8 men in 6 days $=\frac{6}{12}=\frac{1}{2}$

Remaining work $=1-\frac{1}{2}=\frac{1}{2}$
4 more men are engaged.
\therefore Total number of men $=8+4=12$
By work and time formula
$\frac{\mathrm{W}_{1}}{\mathrm{M}_{1} \mathrm{D}_{1}}=\frac{\mathrm{W}_{2}}{\mathrm{M}_{2} \mathrm{D}_{2}}$, we have
$\frac{1}{8 \times 12}=\frac{\frac{1}{2}}{12 \times \mathrm{D}_{2}}$
$\Rightarrow \mathrm{D}_{2}=\frac{1}{2} \times \frac{8 \times 12}{12}=4$ days
34. (a) Part of the tank filled in an hour by both pumps
$=\frac{1}{8}+\frac{1}{10}=\frac{5+4}{40}=\frac{9}{40}$
क्याप्षिर्न
\therefore Part of the tank filled in 4 hours
$=\frac{4 \times 9}{40}=\frac{9}{10}$
35. (b) Let the leak empty the full tank in x hours.
$\frac{1}{3}-\frac{1}{x}=\frac{2}{7}$
$\Rightarrow \frac{1}{\mathrm{x}}=\frac{1}{3}-\frac{2}{7}=\frac{7-6}{21}$
$\Rightarrow \frac{1}{\mathrm{x}}=\frac{1}{21} \Rightarrow \mathrm{x}=21$ hours
कुपाषिিर्य
(a) Part filled by A from 8 a.m to 11 a.m.
$=\frac{3}{15}=\frac{1}{5}$
Part filled by B from 9 a.m. to 11 a.m.
$=\frac{2}{12}=\frac{1}{6}$
Total Part filled till 11 a.m.
$=\frac{1}{5}+\frac{1}{6}=\frac{6+5}{30}=\frac{11}{30}$
At 11 a.m. pipe C is opened to empty it.
\therefore Part of tank emptied in 1 hour
$=\frac{1}{4}-\frac{1}{15}-\frac{1}{12}=\frac{15-4-5}{60}=\frac{1}{10}$
खुप्वियन
$\therefore \frac{11}{30}$ part will be emptied in
$\frac{11}{30} \times 10=\frac{11}{3}$ hours or $3 \frac{2}{3}$
i.e. 3 hours 40 minutes
i.e. at 11.40 a.m.
37. (d) Speed $=180 \mathrm{kmph}$
$=\frac{180 \times 5}{18} \mathrm{~m} / \mathrm{sec}=50 \mathrm{~m} / \mathrm{sec}$
$\left[\because 1 \mathrm{~km} / \mathrm{hr}=\frac{5}{18} \mathrm{~m} / \mathrm{s}\right]$

फறাভিির্স

38. (b) Time taken in covering $5 \mathrm{~km}=\frac{5}{10}=\frac{1}{2}$ hour $=30$ minutes
That person will take rest for four times.
\therefore Required time $=(30+4 \times 5)$ minutes
$=50$ minutes
39. (c) Let the length of the train be x metres.

When a train corsses a platform it covers a distance equal to the sum of lengths of train and platform. Also, the speed of train is same.
$\therefore \frac{\mathrm{x}+162}{18}=\frac{\mathrm{x}+120}{15}$
$\Rightarrow 6 \mathrm{x}+720=5 \mathrm{x}+810$
$\Rightarrow 6 \mathrm{x}-5 \mathrm{x}=810-720$
$\Rightarrow \mathrm{x}=90$
\therefore The length of the train $=90 \mathrm{~m}$.
40. (a) Rate upstream of boat $=\frac{75}{3}=25 \mathrm{kmph}$ Rate downstream of boat $=\frac{60}{1.5}=40 \mathrm{kmph}$
\therefore Speed of boat in still water
$=\frac{1}{2}(25+40)=\left(\frac{1}{2} \times 65\right) \mathrm{kmph}=32.5 \mathrm{kmph}$
41. (c) Rate upstream of boat
$=13-4=9 \mathrm{kmph}$
\therefore Required time
$=\frac{\text { Distance }}{\text { Speed }}=\frac{63}{9}=7$ hours
42. (c) Let the required distance be $\mathrm{x} k \mathrm{~km}$, then
$\frac{x}{5+3}+\frac{x}{5-3}=3$
$\Rightarrow \frac{\mathrm{x}}{8}+\frac{\mathrm{x}}{2}=3$
$\Rightarrow \frac{\mathrm{x}+4 \mathrm{x}}{8}=3$
$\Rightarrow 5 \mathrm{x}=24$
$\Rightarrow \mathrm{x}=\frac{24}{5}=4.8 \mathrm{~km}$.
43. (d) Let the breadth be x m .
\therefore Length $=(23+x) \mathrm{m}$
ख्यापि४र्य
$\Rightarrow 2(\mathrm{x}+23+\mathrm{x})=206$
$\Rightarrow 4 \mathrm{x}=206-46$
$\Rightarrow \mathrm{x}=\frac{160}{4}=40 \mathrm{~m}$
\therefore Length $=40+23=63 \mathrm{~m}$
\therefore Required area $=63 \times 40=2520 \mathrm{~m}^{2}$
44. (d)

Given : $\mathrm{AB}=5$
$\mathrm{DB}=3$
$\therefore \mathrm{AD}=5-3=2$
In the figure we can see that both $\triangle \mathrm{ADC}$ and $\triangle \mathrm{ABC}$ have the same height, h.

Area of a triangle $=\frac{1}{2} \times$ base \times height
When height is constant,
We know, Area of triangle α base,
$\therefore \frac{\text { Area of } \triangle \mathrm{ADC}}{\text { Area of } \triangle \mathrm{ABC}}=\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{2}{5}$
खुप्रिजिय
45. (d)

Let $\mathrm{AB}=\mathrm{AC}=\mathrm{x} \mathrm{cm}$

and $\mathrm{BD}=\mathrm{DC}=\mathrm{y} \mathrm{cm}$
then, $\mathrm{AD}^{2}=\mathrm{x}^{2}-\mathrm{y}^{2}$
$\Rightarrow \mathrm{x}^{2}-\mathrm{y}^{2}=64$
$x+x+2 y=64$
$\Rightarrow 2 x+2 y=64$
$\Rightarrow \mathrm{x}+\mathrm{y}=32$
$\therefore \frac{\mathrm{x}^{2}-\mathrm{y}^{2}}{\mathrm{x}+\mathrm{y}}=\frac{64}{32}$
$\Rightarrow x-y=2$
$\therefore x+y=32$
$x-y=2$
$2 x=34$
$\Rightarrow \mathrm{x}=17 \mathrm{~cm}$

Also, $\mathrm{x}+\mathrm{y}=32$
$\Rightarrow \mathrm{y}=32-17=15 \mathrm{~cm}$
\therefore area of $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}$
$=\frac{1}{2} \times 30 \times 8=120$ sq. cm .
46. (b) The largest triangle inscribed in a semi-circle will have base equal to 2 rcm and height equal to rcm as shown in figure.

\therefore Area $=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 2 \mathrm{r} \times \mathrm{r}=\mathrm{r}^{2} \mathrm{~cm}^{2}$
खुपिएय
47．（d）Let the side of a square is increased by $x \%$ ， its area is increased by $\left(2 x+\frac{x^{2}}{100}\right) \%$ Here，$x=25 \%$
\therefore Effective increase in area
$=\left(2 \times 25+\frac{25 \times 25}{100}\right) \%=56.25 \%$
48．（a）

$a+b+c=56$
$\frac{1}{2} \mathrm{ac}=84$
$\Rightarrow \mathrm{ac}=168$ sq．cm．
$\therefore \mathrm{b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}$
$\Rightarrow \mathrm{b}^{2}=(\mathrm{a}+\mathrm{c})^{2}-2 \mathrm{ac}$
$\Rightarrow \mathrm{b}^{2}=(56-\mathrm{b})^{2}-2 \times 168$［By（i）］
$\Rightarrow b^{2}=3136-112 b+b^{2}-336$
$\Rightarrow 112 \mathrm{~b}=2800$
$\Rightarrow \mathrm{b}=\frac{2800}{112}=25 \mathrm{~cm}$
49．（c）$\sqrt[3]{2}=2^{\frac{1}{3}}=3^{\frac{2}{6}}=\sqrt[6]{4}$
$\sqrt{3}=3^{\frac{1}{2}}=3^{\frac{3}{6}}=\sqrt[6]{27}$
$\therefore \sqrt{3}$ is greater．
50．（a） $\mathrm{x}=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}$
$=\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}+\sqrt{3}}$
$=\frac{(\sqrt{5}+\sqrt{3})^{2}}{5-3}=\frac{5+3+2 \sqrt{15}}{2}$
$=\frac{8+2 \sqrt{15}}{2}=4+\sqrt{15}$

$\therefore y=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}$
फाரिির্स
$\therefore \mathrm{x}+\mathrm{y}$
$=4+\sqrt{15}+4-\sqrt{15}=8$
51．（c）Teacher teaches students．
Similarly，lawyer serves his client．
52．（a）Bow and Arrow are complementary to each other．Similarly，Pistol and Bullet are complementary to each other．
53．（d）The second belongs to the first．Dictionary is a reference material．Similarly，Newspaper is a periodical．
54．（c）The flesh of sheep is called mutton．Similarly， the flesh of deer is called venison．
55．（a）Saint seeks peace and solace through meditation．Similarly，scientist does research to establish some principles．
56．（c）Actors take part in play．Similarly，musicians perform concert．Concert is a musical entertainment given in public by one or more musicians．Play is a work written to be performed by actors．

आাড্仑िस
57．（a）The letters have been written in the reverse order．
STAR \Rightarrow RATS
Similarly，
WARD \Rightarrow DRAW
58．（c）

फुाগिির্স
Clearly，A is father of E, D and B of which E and D are sons and B＇s sex is not given and C is B＇s daughter hence two possibilities exist：
（i）When B is female－then E（and also D） is maternal uncle of C．So option（c）．
（ii）When B is male－then E（and also D）is paternal uncle of C ．
Hence C and E are nice and uncle respectively．Option（c）is correct．

59．（d）

कुपापिিर्य

Obviously P and M are parents (father and mother respectively) of T. Hence P and M are husband-wife. Hence P is son-in-law of M's mother/father ' K '.
60. (c) Only daughter of Vijay's mother means sister of Vijay.
Sister of Vijay is mother of Anand. Therefore, I Anand is nephew of Vijay.
61. (d)

$+\Rightarrow x$	$-\Rightarrow+$
$\times \Rightarrow \div$	$\div \Rightarrow-$

$10+5 \times 10 \div 2-5$
\Rightarrow ? $=10 \times 5 \div 10-2+5$
$\Rightarrow ?=5-2+5=8$
62. (a) $5+3 \times 8-12 \div 4=3$
$\Rightarrow 5+3 \times 8 \div 12-4=3$
$\Rightarrow 5+2-4=3$
63. (c)

$+\Rightarrow \times$	$-\Rightarrow \div$
$\times \Rightarrow-$	$\div \Rightarrow+$

$16 \div 4 \times 10-5+8=$?
$\Rightarrow ?=16+4-10 \div 5 \times 8$
$\Rightarrow ?=16+4-2 \times 8$
$\Rightarrow ?=16+4-16=4$
64. (c) Except Late, all other words convey more or less similar meaning.
65. (c) Except February, all other months have 31 | days each. There are 28 or 29 days in the month of February.
66. (c) Except Panchsheel, all others are holy books. Panchsheel is a set of principles to be followed in relation with other countries.
67. (c) Fantasy is different from the other three words. Fantasy means 'imagination'. All other words show negative or painful state.
68. (a) According to question

It is clear from the diagram that I was going towards south finally.
69. (c)

खुাভিির্স

Now Roy is in North-West direction from the starting point.
70. (a)

Now, he is in north direction.
कुणापिিर्य
71. (c)

Required distance $=10+5=15 \mathrm{~km}$.
72. (c) Today is Thursday $+2=$ Saturday Therefore, tomorow will be Sunday.
73. (c) Mondays $\Rightarrow 8,15,22$ and 29

Therefore, 30th \Rightarrow Tuesday
74. (b) The actual time would be $2: 40$

काড্ভির্র
75. (c)

76. (a)

77. (b)

78. (b)

79. (b) $\mathrm{D}=4$, i.e., Position Number is English alphabet

C	O	V	E	R
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
3	+15	22	2	5

Therefore,

82. (b) There is no ' A ' letter in the given word. Therefore, the word ABILITY cannot be formed.

L E G I B IL I T Y \Rightarrow BILL
LE GIB I LI T Y \Rightarrow BIG

$$
\text { LEG I B I L I T Y } \Rightarrow \text { LEG }
$$

83. (d) There is only one ' N ' in the given word. So, the word KNOWN cannot be formed.
There is only, one ' O ' in the given word. So, the word GODOWN cannot be formed. There is no ' R ' letter in the given word. So, the word WONDER cannot be formed.

K NO W LED G E \Rightarrow G OL D E N
84. (a) There is no 'L' letter inthe given word. Therefore, the word MANTLE cannot be formed.

फ्याप्जिय
There is no 'I' letter in the given word. Therefore, the word SUMMIT cannot be formed.
There is only ' S ' in the given word. Therefore, the word ASSURE cannot be formed.

$$
\mathrm{M} E \mathrm{AS} \cup \mathrm{RE} \text { MEN } \mathrm{T} \Rightarrow \text { MASTER }
$$

85. (b) First premise is Particular Affirmative (I-type). Second premise is Universal Affirmative (Itype).
Both the premises are already aligned. Thus,
Some doctors are teachers

फ्यापिएय

All teachers are counsellors.
We know that,
$\mathrm{I}+\mathrm{A} \Rightarrow$ I-type conclusion.
Therefor, our derived conclusion would be :
"Some doctors are counsellors".
Thus, only conclusion II follows.
86. (b) First statement is Particular Affirmative (I-type).

Second statement is Universal Affirmative (A-type)
Both the statements are already aligned. Thus,
Some Indians are educated.

(All) Educated men prefer small families.
We know that,
I $+\mathrm{A} \Rightarrow$ I-type Conclusion.
Therefore, our derived Conclusion would be:
"Some Indians prefer small families.
Venn-diagrams

87. (b)

Clearly, all monkeys cannot sing.
88. (d) Sonu > Yatendra
(S) (Y)

Amit > Sonu
(A) (S)

Subhash > Amit
(Sb)
(A)

Sattu is the tallest.
Combining all the statements
Sattu $>\mathrm{Sb}>\underset{\substack{\mathrm{A}} \mathrm{S}>\mathrm{Y}}{\substack{\downarrow \\ \text { Amit }}}$
89. (d) Anil > Sunny

Baby > Sunny
Anil > Sunny > Bose
Anil > Baby
Anil > Baby > Sunny > Bose
90. (b) Arun's rank from the last $=31-17+1=15$ th
91. (b) $4 \times 2 \times 3 \times 3=72$
$9 \times 4 \times 2 \times 10=720$
$6 \times 20 \times 1 \times 6=720$
ऊुप्ञिিर्य
92. (c) The sum of the squares of the upper two numbers is equal to the lower number in each figure.

First Figure

$(2)^{2}+(4)^{2}=4+16=20$

Second Figure

$(3)^{2}+(9)^{2}=9+81=90$

Third Figure

$(1)^{2}+(7)^{2}=1+49=50$
आাভিভর্ম
93. (b) $4 \times 3=12$ and $(12)^{2}=144$
$11 \times 9=99$ and $(99)^{2}=9801$
$15 \times 6=90$ and $(90)^{2}=8100$
फुाॅिर्स ध्रा पिजन
94. (b) $12 \times 4=48$
$\sqrt{25}=5$
$16 \times 4=64$
$\sqrt{81}=9$
Similarly,
$15 \times 4=60$
$\sqrt{49}=7$
95. (b) First Figure
$(6 \times 7)+(8+4)=42+12=54$

Second Figure

$(8 \times 4)+(12+7)=32+19=51$

Third Figure

$(9 \times 5)+(14+9)=45+23=68$
96. (c) Suppose, the present age of Vishal be x years.

According to question,
$\mathrm{x}+1=2(\mathrm{x}-12)$
سাড্ভির্स
or, $2 \mathrm{x}-\mathrm{x}=25$
$\therefore \mathrm{x}=25$ years
97. (b) Ascending order of words : in order of ages of history
c. Stone Age
b. Metallic Age
d. Alloy Age
a. Atomic Age
98. (d) Meaningful order of words :
(c) Sick
\downarrow
(b) Doctor
(a) Diagnosis
(d) Treatment
(e) Recovery

आাভ্ভির্स
99. (c) Clearly, there are six blocks in the diagram.
100. (b) Six cubes are visible and four cubes are invisible. Thus, there are 10 cubes.

